
OIC FILE CGPO,,

AD-A 197 639 DNA-TR-87-169

MODE COUPLING IN VLF/LF ATMOSPHERIC
NOISE MODELS ,.

C. R. Warber II
E. C. Field, Jr.

Pacific-Sierra Research Corporation
12340 Santa Monica Boulevard
Los Angeles, CA 90025-2587

31 August 1987

Technical Report

CONTRACT No. DNA 001-85-C-0105

Approved for public release;
distribution is unlimited.

THIS WORK WAS SPONSORED BY THE DEFENSE NUCLEAR AGENCY
UNDER RDT&E RMC CODE B3220854662 RB RB 00047 25904D.

Prepared for
Director
DEFENSE NUCLEAR AGENCY
Washington, DC 20305-1000

8S - .oGI..



-144 I .1.7.~...~' V ~.

REPORT DOCUMENTATION PAGE
'a qE20R! EC:R1'-' CýASSF.CArION Iti RESTRiCT;yE MARK;YGS

UNCLASSIFIED
2. _C..JRIT'Y Cý.ASSFPCA7.ON AUi-ORITY 3 Z)S--RI8UTiONiAVAILA8ILI7Y OF REPORT
fN/A since Unclassified

Ztb. DECý.ASS C!(AT:0NOWNGRIADING SCr4EOULE Approved f or public release; distribution
N/A since Unclassified is unlimited.
' ERFORMING ORGANIZAT:ON REPORT NUMBER(S) S. -MONITORING ORGANIZA7iON REPORT NUMBEQ(S)

PSR Report 1725 _______ DNA-TR-87- 169
6a. %A.ME OF PERFORMING ORGANIZATION 6b. OFF:CE- SYMBOL 7a, NAME OF MONITORING ORGANIZATiON
Pacific-Sierra Research apoJ~lkable) Director
Corporation ________ Defense Nuclear Agencv

6c. ADDRESS XCity. Start, and ZIP Cod*) 7b. ADDRESS (Crty, State. and ZIP Code)

12340 Santa Monica Boulevard
Los Angeles, CA 90025-2587 ________Washington. DC 20305-1000

8a. NAME OF P.NOING, SPONSOnING 8Sb OFFICE SYMBOL 9 PROCUREMENT .NSTRUMENT .DENTMFCAT7ON NUMBER
ORGANIZA~rION (if dpolicable)

______________________I RAAE/Emmes DNA 001-85-C-0105
SC. ADDRESS (City, State. and ZIP Code) *0 SOURCE OF CUNDING %UMBERS

PROGRAM IP4OJECT -ASK WORK ...NT
ELEMENT NO NO I OACCESSiON NO0

11 TITLE (include Secunity Classification) LRBD085

MODE COUPLING IN VLF/LF ATMOSPHERIC NOISE MODELS
12. PERSONAL AuTI40R(S)
Warber, C. R.; Field, E. C. Jr.

13a. TYPE OF REPORT j13b. TIME COVERED 11I4 ClArE OF REPORT (Vear Monthi. Day) S. PAGE COuNT
Technical I rROM _LJQ1LiTo SZO62 I -870831 I 78

16. SUPPLEMENTARY NOTATION
This work was sponsored by the De ense Nuc-leaT Agency under RDT&E RMC Code
B3220854662 RB RB 00047 25904D.. 42 IA

17 COSArI CODES ils SUBECT TERMS (Contnue on reverse if necessary and 'dorirty by block number)
-'ELD. GROUP SUB-GRO VLF/LF Propagation, Strategic Communication
25 2 Ground Conductivity' Waveguide (,/
20 1 Lonifiv cmiiagn

19 A8SSRACT (Continue on rever%#e&L4! navy and identify by block number') -4..CX.4 ~'
PSR derives and test ýtractable formulas or coupling among VLF/LF waveguide modes

that occurs at boundaries seiparating regions of different ground conductivity. Although
algebraically complicated, the formulas are easily programmed and require less computer
running time than numerical mode-coupling algorithms used in ýx-act"'CEomputer codes.
The formulas have two desirable features; (1) computational simplicity and (2) dependence
on ground conductivity on either side of a transition (while depending only slightly on
the conductivity variation within the transition itself).

The formulas are subjected to three approximations, valid under most circumstances:
(1) substitution of an equivalent parallel-plate waveguide for the actual waveguide in
the short spatial interval that contains the conductivity boundary, (2) application of
the WKB approximation, requiring that all conductivity changes in the transition zone be
gradual (occurring over at least 1/6 wavelength), and (3) neglection of phase (only the
magnitudes of the modes are used when performing certain numerical operations). .- 'i

20. DISTRIBUTION/ AVAIL.ABILITY OF ABSTRACT 121 ABSTRACT SECURITY CLASSIFICATION
CUNCLASSIFIED/1JNLIMITEO 13 SAME AS RPT. C] OTIC USERS IUNCLASSIFIED

22a. NAME OF RESPONSIBLE INDIVIDUAL 22b. TELEPHONE (include Area Cod*) 2cOFIESYMBOL
Sandra E. Young (202) 325-7042 DNA/CSTI

DD FORM 1473, 84 MAR 83 APR edition m~ay Do Used Qmtil WaWhiS10d. SECURITY CLASSIFICATION OF THIS PAGE
All other! tditIoms are obsolete. UNCLASSIFIED



~A A ~.ai~r~~~wvux, V w- 1 - WVsWW~X~U Ml 1W RI 1-fVL(1FUkr WONWO

UNCLASSIFIED
SECURITY CLASSIFICATION OF THIS PAGE

19. ABSTRACT (Continued)

-- Although derived for inclusion in future computer models of VLF/LF worldwide
atmospheric noise, the mode-coupling formulas can be used in any application involving
such a large number of propagation paths that the length of computer running time becomes
a problem. , / ,,

/.../-•.C- i / '.7

SECURITY CLASSIFICATION OF THIS PAGE

ii UNCLASSIFIED



SUMMARY

This report derives and tests tractable approximate formulas for

coupling among very low frequency/low frequency (VLF/LF) waveguide

modes that occurs at boundaries that separate regions having different

ground conductivity. Although algebraically complicated, these for-

mulas are easily programmed and require far less computer running time

than the numerical mode-coupling algorithms used in full wave computer

codes.

To derive and implement the formulas, we substitute an equivalent

parallel-plate waveguide for the actual waveguide in the short spatial

interval that contains the conductivity boundary. This approximation

is most easily applied to daytime ionospheric conditions. We derive a

set of coupled differential equations which have as their first-order

solution the well-known Wentzel-Kramers-Brillouin (WKB) approxima-

tion. However, in contrast to the WKB solution, the method of the

present report gives results beyond the first-order and obtains solu-

tions to any order necessary to achieve specified accuracy. Although

derived for inclusion in future computer models of VLF/LF worldwide

atmospheric noise, the mode-coupling formulas could be used in ap-

plications where a large number of propagation paths cause computer

running time to become a problem.
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PREFACE

To assess the performance of long-wave communication links in

nuclear environments, it is necessary to calculate the effect of the

environment on atmospheric noise as well as on the signal. Because no

data for atmospheric noise exist under nuclear-disturbed conditions,

the Defense Nuclear Agency is considering developing a computer model

that will predict the noise. A major difficulty in implementing such

a model is developing an accurate, yet tractable, means of calculating

coupling between waveguide modes over geologically complex regions

like Canada and Greenland. Accordingly, the present report develops

and tests mode-coupling formulas suitable for inclusion in future

noise models.
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CONVERSION TABLE

Conversion factors for U.S. Customary to metric (SI) units of measurement

MULTIPLY "- BY "- TO GET

TO GET 4 BY 4 DIVIDE

angstrom 1. 000 000 X E -10 meters (m)

atmosphere (normal) 1.013 25 X E +2 kilo pascal (kPa)

bar 1.000 000 XE *2 kilo pascal (kPa)

bae 1. 00 000 X E -28 meter
2 (im

2)

British thermal unit Ithermochemrica) 1.054 350 X £ -3 joule (JW

calorie (thermochemical) 4. 184 000 joule (J)

cal Ithermochemical)/cm2 4. 184 000 X E -2 mega )oule/m
2 

(MJ/m
21

curie 3.700 00#) X E -1 giga becquerel (GqI)

degree (angle) 1. 745 329 X E -2 radian (rid)

degree Fahre.nheit , - (t f - 459. 67)/. 8 degree kelvin (K)

electron volt 1.602 19 X E -19 joule (J)

erg 1.000 000 X E -7 joule (J)

erg/second 1. 000 000 X E -7 watt (W)

foot 3. 048 000 X E -1 meter (m)

foot-pound-force 1. 355 818 joule (J)

gallon (U. S. liquid) 3.785 412 X E -3 meter3 (m3

inch 2.540000 X E -2 meter (in)

jerk 1.000 000 X E -9 joule (J)

joule/kilogram (J/kg) (radiation dose
absorbed) 1.000 000 Gray (Gy)

kilotons 4. 183 terajoutes

kip (1000 lbf) 4.448 222 X E .3 newton (N)

kip/inch2 (klsi 6.894 757 X E +3 kilo pascal (kPa)
ktap newton -second /m2

1.000 000 X E +2 (N-e/m 2
)

micron 1 000 000 X E -6 meter (m)

mil 2. 540 000 X E -5 meter (m)

mile (international) 1.609344 X E +3 meter (m)

ounce 2. 834 952 X E -2 kilogram (kg)

pound-force (lbs avoirdupois) 4.448 222 newton (N)

pound-force inch 1.129 848 X E -1 newton-meter (N.m)

pound-force/inch 1. 751 268 X E .2 newton/meter (N/m)

pound-force /foot 4. 788 026 X E -2 kilo pascal (kPa)

pound--force/inch2 (psi) 6. 894 757 kilo pascal (kPa)

pound-mass (Ibm avoirdupois) 4. 535 924 X E -I kilogram (kg)

pound-mass-foot
2 

(moment of inertia) kilogram-meter'
4.214 011 X E -2 (kg.m

2)

pound-mass/foot
3  kilogram/meter

3

1.601 846 X E +1 (kg/m
3

)

rad (radiation dose absorbed) 1,000 000 X E -2 **Gray (Gy)

roentgen coulomb/Alogram
2. 579 760 X E -4 (C/kg)

shake 1. 000 000 X E -8 second (s)
slug 1.459 390 X E .1 kilogram (kf)

tort (ram Hg, 0 C) 1. ,333 22 X E -1 kilo pascal (kPa)

-The becquerel (B:) i the ST unit of radioactivity; 1 Bq . 1 event/s.
•The Gray 10y) is y he St unit of absorbed radiation.
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SECTION 1

INTRODUCTION

Electromagnetic signals or noise at frequencies below 60 kHz

consist of a number of waveguide modes that propagate in a cavity

bounded sharply on the bottom by the earth and diffusely on the top by

the ionosphere. The excitation and propagation of those modes depend

on the electrical properties of the earth and ionosphere. For uniform

paths, such as a midday path over seawater, the modes propagate more

or less independently of one another. However, on so-called mixed

paths, along which the properties of either the earth or the iono-

sphere change, the modes become interdependent. That process is

called mode coupling and is strongest near transition zones, where

geophysical changes are most pronounced.

The most common and severe transition zones in the earth-

ionosphere waveguide are at the boundaries that separate large regions

of dissimilar ground conductivity. Other transitions are at the

terminator and at the edges of ionospheric regions subjected to solar-

induced or nuclear disturbances. This report mainly addresses ground

conductivity transitions, although the methods developed here are also

applicable to other types.

Waveguide transitions can be modeled as being either gentle or

abrupt, depending on whether they occur over distances that are longer

or shorter, respectively, than about one-sixth of the signal wave-

length. Gentle transitions cause only slight mode coupling, whereas

abrupt ones cause strong coupling. In the 15 to 60 kHz band con-

sidered here, one-sixth of a wavelength never exceeds 3 km.

Both the WAVEGUID code (developed by the Naval Ocean Systems

Center, San Diego, California) and the WAVEPROP code (developed by

Pacific-Sierra Research Corporation) can handle mode coupling on mixed

paths having either gentle or abrupt transitions. Data are sparse,

however; and, for lack of better information, geological maps sed for

this purpose show discontinuous ground-conductivity transitio s [Wes-

tinghouse, 1968]. The codes, therefore, treat conductivity

1



transitions as abrupt. In fact, conductivity transitions probably

occur over distances of several kilometers or more and should, there-

fore, be treated as gentle.

Propagation codes, which are always expensive to run, are espe-

cially costly for paths that traverse geophysically complex regions,

such as Canada. Although that expense is often manageable, it can

become overwhelming if the number of paths is large. A case in point

is prediction of low-frequency atmospheric noise, which is modeled by

calculating the energy that propagates from several hundred worldwide

noise sources. The number of propagation paths in that case is enor-

mous, and inclusion of a full-fledged, mode-coupling matrix at each

conductivity boundary is out of the question. Simplified equations

are needed to make such calculations tractable.

The present report addresses the problem of atmospheric noise

modeling. In order to derive mode-coupling formulas that are inexpen-

sive to compute, we make three main assumptions. First, because the

conductivity transitions occur over distances much shorter than the

earth's radius, we use a parallel-plate waveguide to model the earth

and ionosphere. That assumption allows calculation of mode parameters

from transcendental, rather than differential equations. It is more

easily applied to daytime or disturbed conditions, where propagation

is nearly isotropic, than to nighttime conditions, where the iono-

sphere is diffuse and isotropic and therefore more difficult to model

as a conductivity half-space. This report does not address nighttime

propagation. Second, we use a generalized Wentzel-Kramers-Brillouin

(WKB) method to determine the fields. That method is more accurate

than the usual WKB solutions (see for example Budden, 1985). The main

validity criterion is that the change in conductivity is gentle enough

that reflections of the modes can be neglected. The appendix shows

that criterion to be well satisfied. The third and final assumption

is that relatively few modes need be retained. That assumption is

valid because noise bursts are incoherent, and phase need not be kept

in mode summation (but is kept elsewhere). There is thus no need to

keep many high-order modes, which are usually included in computing

coherent signals to ensure that "nulls" are calculated correctly.

2



The new formulas connect long-wave fields on opposite sides of

waveguide transitions and are in a form that can be used in future

noise models. They require much less computer time than equations now

used in sophisticated propagation codes; and they provide accuracy at

least commensurate with--and probably becter than--the accuracy of the

input data.
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SECTION 2

TRANSITIONS IN GROUND CONDUCTIVITY

In this section, we discuss ground conductivity maps used for

long-wave propagation calculations. We also present sample data

showing that substantial approximations can be made in computing mode

coupling at conductivity boundaries.

CONDUCTIVITY -MAPS.

Long-wave propagation does not depend strongly on conductivity

over regions where the conductivity exceeds approximately

3 x-10- 3 S/m, because ground having such high conductivity reflects

very low frequency/low frequency (VLF/LF) waves almost perfectly. For

that reason, only slight mode coupling occurs at a boundary separating

two regions of high conductivity. However, ground conductivities

below about 10-3 S/m strongly affect the excitation and propagation of

transverse magnetic (TM) signals in the VLF and LF bands, and can

affect excitation of transverse electric (TE) signals. Such low

conductivities occur in Greenland and Northeastern Canada, as well as

certain other regions, including parts of the Soviet Union.

Figure 1 is an example of the conductivity maps used in long-wave

propagation calculations [Westinghouse, 1968]. It shows VLF conduc-

tivity values throughout most of North America. Analogous maps exist

for virtually all regions of the earth. The map divides Canada into a

number of large regions, with uniform conductivity assigned to each.

The regions are separated by abrupt boundaries.

Maps such as that in Fig. 1 are based on sparse data. There is

particularly little information about remote areas like Northern

Canada; for those regions, confidence in the conductivity values is

low [Westinghouse, 1968]. Although such maps are useful for inferring

average ground conductivity over long propagation path segments, their

resolution is not good enough to define the structure within bound-

aries that separate adjacent regions. The boundaries shown on the

maps are, therefore, not based on data, and are portrayed as abrupt

4
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simply for ease of presentation. Since other models are unavailable,

conductivity maps like that shown are used as inputs to long-wave

propagation codes.

We assert that conductivity transitions--although abrupt on the

scale of a continent--are probably rather gentle on the scale of a

wavelength. Transition zones between conductivity regions should,

therefore, be modeled as gradual rather than as sharp boundaries.

EFFECTIVE AND BULK GROUND CONDUCTIVITIES.

The electrical conductivity of the earth varies with depth, so

the effective ground conductivity "seen" by a wave in the earth-

ionosphere waveguide is an average over about a skin-depth 6 from the

surface. Because the skin depth depends on wave frequency, the effec-

tive ground conductivity exhibits a weak frequency dependence. The

map shown in Fig. I, for example, applies to frequencies from 10 to

30 kHz.

Figure 2 shows skin depth versus frequency for several values of

ground conductivity a [Kraichman, 1970]. The VLF/LF communication

bands are indicated by the shaded regions on the right side of the

figure. For normal ground, where a lies between 10-2 and 10-3 S/m,

the VLF/LF skin depths lie between about 30 to 100 m; for poorly

conducting ground, where a lies between about 10-4 and 10-5 S/m, the

skin depths lie between about 300 to 1000 m.

Of all the conductivity boundaries shown in Fig. 1, those at

shorelines are expected to be the most abrupt. To examine that be-

havior, we use the data given in Fig. 3, which shows measured bulk

conductivity versus distance inland on the Olympic Peninsula in

Northwest Washington State (Bostick, Smith, and Boehl, 1977]. Al-

though not measured at a low-conductivity site, the data are among the

few available that illustrate the spatial dependence of conductivity

near a boundary.

Figure 1 shows that the effective conductivity of the Olympic

Peninsula is 10-2 S/m, which implies that depths within several tens

of meters from the surface contribute to the conductivity. Figure 3

shows in detail, on the other hand, that at such depths the

6
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conductivity is about 5 x 10-3 S/m at distances more than 20 km from

the shoreline, and increases as the shoreline is approached. The

conductivity is presumably 4 S/m on the sea side of the shoreline, but

no data were measured there.

We draw two conclusions from Fig. 3. First, the inland effective

conductivity on the Olympic Peninsula (a = 5 x 10-3 S/m) is within a

factor of 2 of the nominal value (a - 10-2 S/m) given on the large-

scale conductivity map. Considering the sparse data on which the maps

are based, such accuracy is as good as can be expected. Second, at

least on the Olympic Peninsula, the effective ground conductivity

requires more than 10 km to transition from its shoreline value to its

inland value. Although those data are site-specific, we assert that

qualitatively similar behavior occurs at other sites (where data are

not available), and that even more gradual transitions probably occur

between the inland regions depicted in Fig. 1.

FULL-WAVE CALCULATION OF FIELDS AT TRANSITIONS.

The WAVEGUID [Pappert and Shockey, 1972; Pappert, Moler, and

Shockey, 1970] and WAVEPROP [Field et al., 1976] codes calculate

waveguide mode parameters numerically, accounting for (1) the vertical

inhomogeneity of the ionosphere; (2) the curvature of the earth; and

<3) anisotropy caused by the geomagnetic field. That calculation

requires the solution of nonlinear differential equations for as many

as 10 to 20 modes. Each solution is subject to boundary conditions at

the earth and ionosphere. That procedure uses substantial computer

time, even on modern high-speed machines.

Despite their generality in other respects, however, those codes

use equations that are valid only when the earth-ionosphere waveguide

is uniform along the propagation path. Mixed paths are handled by

dividing the waveguide into a number of laterally uniform segments,

calculating properties of the full complement of modes in each seg-

ment, and then matching solutions at the segment boundaries. For

example, analysis of a trans-Canadian path across six conductivity

regions (see Fig. 1) would therefore require at least six times as

much computer time as a path of equal length over seawater, even if

9



boundaries between regions were treated as abrupt. For more realistic

conductivity transitions, like that illustrated in Fig. 3, WAVEGUID

and WAVEPROP must divide each boundary into many uniform segments--the

so-called staircase fit to the actual transition. That process. causes

a multifold increase in computer time.

To illustrate the above points, we use the WAVEPROP code to

calculate fields near transitions of varying abruptness. Figure 4

shows an example calculated for a transition from seawater (conduc-

tivity a = 4 S/m) to Greenland (a = 10-5 S/m). The assumed frequency

is 45 kHz, which has a wavelength A of 6.8 km and a reduced wavelength

A/2ff of about 1 km.

The solid line (Fig. 4) is the electric field calculated for an

abrupt transition; the dashed line is the field when conductivity

-changes linearly from 4 to 10-5 S/m over a distance of 1 km. The

signal for the abrupt transition is different from that for the I km-

wide transition, so it is necessary to account for finite boundary

widths.

The signal exhibits peaks and nulls behind the transition. That

structure is caused by interference among modes excited at the

shoreline; we had to retain 20 modes to calculate the interference

pattern accurately. To model the I km-wide transition, we had to

divide the boundary into about 30 segments, most of which were con-

centrated between conductivity values of 10-4 to 10-5 S/m. All 20

modes had to be calculated in each of the 30 boundary segments, so the

total calculation required 600 (20 x 30) numerical solutions of the

field equations.

Figure 4 highlights four problems that must be addressed in

constructing a computer model for atmospheric -nise: -(1) transitions

between geologically different regions must be accounted for where the

conductivity is low, (2) the signal depends on the width of the tran-

sition, (3) no data exist that define the correct transition widths in

most regions, and (4) full-fledged calculations for gentle boundaries

require an enormous number of numerical solutions. It is therefore

impractical to use WAVEGUID or WAVEPROP directly in an atmospheric

noise model that accounts for propagation across regions of both low

and laterally nonuniform ground conductivity.

10
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NEGLECT OF BACKWARD REFLECTIONS.

The well-known WKB, or slowly varying, approximation greatly

simplifies propagation equations because, among other things, it

permits us to neglect the signals reflected backward from gradients in

the propagation medium. The WKB approximation can be applied when

changes in the propagation medium occur over distances greater than

the reduced wavelength A/2f (e.g., Budden [1985]). If changes occur

over shorter distances, the transitions should be modeled as abrupt,

and backward reflections should be included.

The wavelength A lies between 5 and 20 km in the 15 to 60 kHz

communications bands, so the reduced wavelength A lies between 0.8 and

3 km--shorter than distances over which large-scale geophysical struc-

tures would be expected to change, and shorter than the lateral scales

indicated, for example, by Fig. 3.* Those considerations lead to the

intuitive conclusion that conductivity transitions are slow enough

that reflections can be ignored, even near shorelines.

Mode coupling calculations require application of second-order

formulas, details of which are given in the appendix. We use the

gentleness of the conductivity transitions only to argue that backward

reflections can be ignored. The appendix also estimates the coeffi-

cient of modal reflection R from the transition zone. For the TE

modes, R is always small; for the TM modes, IRI < 0.02 in the VLF/LF

range.

*Although nongradual transition might occur in the immediate

vicinity of a shoreline, where the conductivity changes from 4 S/m
(seawater) to a lesser--but still high--value characteristic of wet
ground, the important transitions to low inland conductivities occur
more slowly, as shown in Fig. 3.

12



SECTION 3

MODE-COUPLING EQUATIONS

In this section, we describe the model waveguide we use near

conductivity boundaries and cite the connecting formulas based on that

model. The appendix gives the derivations of those formulas.

PARALLEL-PLATE WAVEGUIDE MODEL OF TRANSITION ZONE.

The major complexity in the WAVEGUID/WAVEPROP class of codes is

caused by the diffuse ionosphere, which requires that nonlinear dif-

ferential equations for the height dependence of the wave admittance

be solved numerically and iterated to match boundary conditions at the

ground. Those matching conditions give the so-called modal equation,

whose solution yields the attenuation rates and phase velocities of

all waveguide modes.

That numerical complexity can be avoided by representing the true

ionosphere by one that is uniform and sharply bounded. By properly

selecting the effective ionospheric height h and conductivity ai, it

is possible to define an equivalent, sharply bounded, earth-ionosphere

waveguide that gives approximately the same VLF/LF propagation as the

real waveguide [Wait, 1970].

The advantage of assuming a sharply bounded ionosphere is that

the wave admittance is given by a simple formula, rather than by the

numerical solution of a complicated differential equation. The modal

equation is then a transcendental equation, easily solved without

numerical integration. The disadvantage, of course, is that calcula-

tions made using a sharply bounded model waveguide are less precise

than those made using a diffuse ionosphere.

The question is whether the computational ease of the sharply

bounded model is worth the degraded precision. In most cases it is

not. But, for the special problem of computing mode coupling at

conductivity transitions, the precision loss is minor and acceptable.

The reason is that the sharply bounded model need be used only to

obtain connecting formulas that bridge each transition, which extends

13



over perhaps 10 to 20 km--an infinitesimal distance on a global scale.

The WAVEGUID/WAVEPROP class of codes can be used on all other portions

of the path.

Figure 5 is a schematic diagram of our model. Propagation is in

the x-direction. The ground conductivity a has a constant value of

a = agI at ranges shorter than x = 0 and a different constant value

a =aglI at ranges greater than x = 2. The transition from agI to

agll occurs in the interval 0 < x < 2, where a = ag(X). The abrupt

boundaries shown in Fig. 1, and used in most calculations, correspond

to setting Y = 0 in our model. The task in the present report is to

derive formulas that connect fields at x • 0 to fields at x • 2,

subject only to the condition that ag(X) varies slowly enough to

permit us to neglect backward reflections.

Outside the region 0 < x < 2, we use full-wave codes of the

WAVEGUID/WAVEPROP class, which account for the round earth and diffuse

ionosphere but assume a uniform ground. The flat regions for 0 < x

and x > I indicate the region where we match the full-wave modes to

the modes used in the parallel plate waveguide. In the diagram these

appear to have a finite extent, but, in fact, we treat them in the

calculations as if they were infinitesimally thin.

CONNECTING FORMULAS.

Tractable equations that describe mode coupling at a conductivity

transition are derived in the appendix. Here, we present those equa-

tions and define certain parameters. We first write the equations in

general notation, applicable to either polarization, and then special-

ize the notation to TM and TE modes. The equations given below omit

the geomagnetic field and are valid for daytime or nuclear-disturbed

ionospheres, but not for undisturbed nighttime ionospheres.

The refractive indices of the ionosphere and ground are:

2ia.2 1
i WE0
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and

2n = - (2)
g r wC0

where w is the angular frequency, E0 is the permittivity of free

space, and Er is the relative permittivity of ground. Note that ag,

Cr, and hence ng, are functions of x in the interval 0 : x 5 ý.

The solutions of the Booker quartic [Budden, 1985] in the iono-

sphere and ground are:

2 2 2
qin ni +n (3)

and

2 2 C2
g=n -1+ , (4)

where Cn is the cosine of the eigenangle of the nth waveguide mode and

is found by solving the modal equation, given below. To simplify the

notation, we occasionally suppress the subscript n on q and C; those

quantities, however, depend on the mode number.

Our goal is to express each waveguide mode beyond the transition

(x Ž 1) in terms of the modes incident on the transition. For the nth

incident mode, we write:

-ikSlXFI Sn

F (x, z) = r f (z) e (x :5O) (5)
n nn

where, k is the wave number and, depending on the polarization, F is

the y-component of the magnetic or electric fields. In region I the

ground conductivity is uniform, so the height-gain function f(z) and

the propagation coefficient SI are independent of x. Both are func-

tions of x in the region 0 : x < 1, because of the nonuniform

16



conductivity. The factor rn (essentially the excitation factor of the

nth mode in region I) is determined numerically using

WAVEGUID/WAVEPROP solutions, which are presumed to be available for

x 5 0. The propagation coefficient is simply

S 2 = I - (6)

If we neglect backward reflections, the mode amplitude FIl(R,z)

on the far side of the transition is:

F II(, z) = r f (A, z) fS (0) A ()

n n n S n(1) An(1)

where An is a normalization function, and is given by Eq. (19) for TM

and Eq. (27) for TE modes. Equation (7) is the sought-after connect-

ing formula. We present and discuss the terms of that equation below.

The quantity Qn is the mode-coupling factor, and, as shown by its

formula, which is given below, accounts for energy scattered into the

nth mode from other modes. It also accounts for energy scattered from

the nth mode into other modes. Depending on the particular situation

and the mode number, Q can therefore be either positive or negative.

All terms other than Q in Eq. (7) involve only the nth mode, and

account for changes in the propagation coefficient and height gain

caused by the conductivity contrast between agll and agI.

The mode-coupling factor Qn is the crux of the present report.

It is given by:

Q Qi (8)
Qn = n

i-i

17



where

Q(i) = S (0) G + G i (9)
n LSn S(0) nm nn

m-1n
mon

)g_(x') (x') dx' (10)nm (x)gn km'
k 0

GM (x)= gnm(x') dx'
.0

and

/AM(0) An(x) S n(X) + S m(x)
(x) 2An(x) A(0) Am(x) /Sn(X) S m(x)

exp -ik J Sm(X') - Sn(x') dx' d

ik[C2 (x) - C2 (x)] x )

-0 if n = m (12)

The sum over the index m in Eq. (9) accounts for scattering into

the nth mode from all other modes. The term G4i+1) accounts for

scattering from the nth mode. In practice, it is seldom necessary to

carry modes higher than m = 5. The sum over the index (i) in Eq. (8)

accounts for various orders of scattering among modes. For example,

the term Qý1 ) in Eq. (8) denotes single scattering, which involves

only energy transferred directly between the nth and mth modes. The

18
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term QW2) denotes second-order scattering, in which energy is trans-

ferred from all modes into the mth mode, and then from the mth to the

nth. The term Q43) denotes third-order mode scattering, and so

forth. In practice, retaining only the single-scattering term Q(I) is

adequate for situations in which ag8 and agII exceed 10-3 S/m. Higher

order scattering terms must be retained for conductivities lower than

10-3 S/m, although in no case did we find it necessary to retain terms

beyond (i) = 4.

Note that gnm in Eq. (12) is proportional to the term d'n/dx [in

is defined in Eq. (20) for TM and Eq. (28) for TE] and is also propor-

tional to the lateral gradient of the ground conductivity. For

uniform ground, that derivative vanishes and there is no mode cou-

pling, because in that case Qn = 0. Also, for uniform ground,

S(1)= Sn(O), fn(2 ) = fn(0), and An(i) An(0) in Eq. (7); so

F•I(2= FI(O), as must be the case in the absence of conductivity

transitions.

Some terms in Eqs. (7) through (12) have different forms for TM

modes than for TE modes. Below, we give those forms for the two

polarizations.

TM Modes.

For TM modes, the amplitude Fn is given by:

Fn ny ' (13)

where ZO = 377 Q and Hny is the y-component of the nth mode magnetic

intensity vector. The eigenangle cosines Cn are the solutions of the

TM modal equation:

iC(Zi +. Zg) cos kCh - (C2 + ZiZg) sin kCh = 0 (14)

where the relative TM ionospheric and ground impedances are

19

" "0tC Y '



Zi 2 i/n, (15)

and

Zg - qg/ng2  (16)
g gg

In the transition region 0 : x : 1, the impedance Zg, and hence Cn, is

a function of x. For large conductivities (ag Z 10-2), where

IZgI << 1, the solutions to Eq. (14) are:

C = (n - 1/2) •-1 , n = 1, 2, (17)
n k

The TM height-gain function is

iz
f = cos kCz + • sin kCz (18)n C

The normalizing function A isn

A - 1 {(c2 _ Z2 [ikh - 1 {Z1 i n] Z} (19)21kC 2 C 2_Z 2 qlni1

And the function n is simply

Z 9Z (20)g

In the above equations, we have occasionally suppressed the x-

dependence and the mode-number subscript n.

20
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TE Modes.

For TE modes, the amplitude Fn is given by

F~= E , (21)
Fn ny

where Eny is the y-component of the nth mode electric vector. The

eigenangle cosines Cn are solutions of the TE modal equation:

ic (Zi + Zg9) cos kCh - (1 +C 2 ZjiZg9) sin kCh = 0 ,(22)

where the TE relative ionospheric and ground impedances are

Z=i I/qi , (23)

and

Z = 1/q . (24)

For large conductivities, where IZg. << 1, the solution to

Eq. (22) is:

C = nk n = 1, 2, (25)

The TE height-gain function is

iq
f = Cos kCz + •C sin kCz (26)

nC

The normalizing function An is

A= 1k {[ - C](ikh + Zi) - • (27)

21
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And the function n is
n

q = q(28)

DETERMINATION OF WAVEGUIDE HEIGHT h AND IONOSPHERIC CONDUCTIVITY ai
FROM WAVEGUID/WAVEPROP SOLUTIONS.

A major benefit of the localized parallel-plate-waveguide ap-

proach is that it permits the eigenangle cosines to be found from

Eqs. (14) and (22), the simple modal equations. The WAVEGUID/WAVEPROP

codes, on the other hand, must solve nonlinear differential equations

and iteratively match boundary conditions to find Cn. The latter

procedure requires much computer time and may be labor-intensive for

even a skilled operator. The task remains, however, to find a com-

bination of effective waveguide height h and ionospheric conductivity

ci that gives values of Cn that are nearly the same as those obtained

using WAVEGUID/WAVEPROP in conjunction with realistic diffuse iono-

spheres.

The starting point for finding h and ai is the series of values

of Cn calculated with WAVEGUID/WAVEPROP in region I (x < 0--see

Fig. 5). By using either the equation for TM [Eq. (17)] or for TE

[Eq. (25)], we can write:

h n .(29)n 2(Cn+l - Cn)

Strictly speaking, the value of hn given by Eq. (29) depends on the

mode number n, but, in practice, h varies only slightly with n (in our

experience, variation of h is less than 5 percent. We therefore use

N

h = h , (30)

n=l

where N is typically a number on the order of 5.

22
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After finding h, we then use the mode equations [Eqs. (14) and

(22)] to find ai. Specifically, we insert Cn (from WAVEGUID/

WAVEPROP), Zg, and h into those equations and solve for Zi, which

defines the value of ai. As the case for h, the values of ai calcu-

lated in that manner depend only slightly on mode number n, so we use

a value averaged over the important modes.

23
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SECTION 4

TEST CASES

In this section, we present sample calculations that test the

approximate formulas of Sec. 3 against exact ones made with the

WAVEPROP code. We also discuss practical aspects of applying those

formulas.

PARALLEL-PLATE WAVEGUIDE.

Figure 6 illustrates how closely the parallel-plate model

waveguide approximates the actual waveguide. It shows ReCn versus

ground conductivity for a frequency of 45 kHz and the five lowest

order TM modes. The values of Cn (denoted by dots in the figure) were

calculated numerically using WAVEPROP and account for earth curvature,

the diffuse height-profile of the ionosphere, and the geomagnetic

field. We assume north-south daytime propagation and a 60 deg geomag-

netic dip angle.

To define the equivalent height and conductivity of the parallel-

plate waveguide, we insert ag = 10-2 S/m and the corresponding Cn

values from Fig. 6 into Eqs. (14), (29), and (30) to find h - 59 km

and ai - io- 4 S/m. Substituting those values of h and ai back into

Eq. (14) gives the values of ReCn indicated by the solid lines in

Fig. 6.

The agreement between the "exact" (WAVEPROP) and approximate

(parallel-plate waveguide) results is excellent for all five modes and

the entire range of ground conductivities.* It would be even closer

for frequencies lower than 45 kHz, which are less affected by the

*The first mode at 10-2 S/m is the only one in error by a substantial

amount. This mode is the most oblique; we expect it to be affected
the most by the curvature of the earth, which we ignore. That mode
is typically not as important as the second, since it has higher
attenuation and lower excitation. Moreover, at high conductivity
(ag > 10-3 S/m) there is very little mode coupling, so the error indi-
cated does not matter for our analysis. However, this mode is the
Brewster's mode (i.e., Cl= Z ) for ag < 10-3 S/m, where mode
coupling is important. In t9is region the modes match very well.
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earth's sphericity and less sensitive to waveguide parameters. Cal-

culations (not reproduced here) show equally close agreement for TE

modes. The modal equations [Eqs. (14) and (22)] may therefore be used

to find Cn(x) across the conductivity transition. That simplification

reduces computer running time enormously. [Note that although

Eqs. (14) and (22) give accurate values of ICnI = ReCn, they do not

provide accurate values of ImCn, which govern the waveguide attenua-

tion rates. Because ImCn << ReCn, and because the assumed transition

zones are too narrow (I << 100 km) for attenuation to be important,

that inaccuracy causes no problems for the application addressed in

the present report. However, the parallel-plate model waveguide

cannot be used to approximate long (> 100 km) path segments where

attenuation is important and must be calculated accurately.]

MODE COUPLING.

To examine the dependence of mode coupling on the conductivities

agI and agII, we assume a conductivity transition where ag(x) varies

according to the formula

loglo0 a(x) = -5X/I (31)

If we use this logarithmic variation, the results depend only on Cgll,

not on the scale length 2. In this case, it is true that mode cou-

pling depends only on the endpoint values agI and agll.

If nonlogarithmic transitions are used, the mode coupling depends

on transition shape as well as on the endpoint values. That depen-

dence is slight, however, and to a first approximation it can usually

be ignored. Mode coupling at a boundary can therefore be calculated

by specifying agI and agll and using any convenient model for ag(x) in

the zone 0 : x : 2, provided that the transition is gentle enough so

that reflections can be ignored. As previously mentioned, that near-

independence of mode coupling on transition shape is important, be-

cause there are virtually no data on how ag varies within transition

zones.

To illustrate how mode coupling depends on the conductivity

contrast at a boundary, we assume a second-order (n - 2) TM mode of

26



unit amplitude incident on a transition zone where the conductivity

changes from agI - I S/m to values of agII that range from 1 to

10-5 S/m. No other modes are present for x < 0, so

I forn= 2,

rrn = (32)
0 for n o 2

in Eq. (5). We further assume a frequency of 30 kHz.

Figure 7a shows the amplitude of mode 2 versus aglI, and

Figs. 7b-e show the ground-level amplitudes of modes 1, 3, 4, and 5,

respectively. For ease of comparison, the scales used in Figs. 7a-e

are consistent. Each figure shows plots of several graphs correspond-

ing to the various orders of coupling (values of the index i) dis-

cussed above in conjunction with Eqs. (8) and (9).

Figures 7a-e show that when aglI exceeds about 3 x 10-3 S/m, the

amplitude of the second mode remains near unity and the amplitudes of

the other modes are small. For values of cgll below 3 x 10-3 S/m,

however, the amplitudes of modes 1, 3, 4, and 5 increase at the ex-

pense of mode 2. That behavior confirms our earlier assertion that

mode coupling is weak for high ground conductivities, but can be

strong for low conductivities.

Another conclusion to be drawn from Figs. 7a-e is that retention

of only first-order coupling (i = 1) usually provides accurate

results, although it is necessary to retain as many as three or four

orders at the lowest values of aglI. In no case do we find that

orders higher than i = 4 contribute significantly.

GENTLE VERSUS ABRUPT BOUNDARIES.

In our final example, we compare mode coupling across gentle

boundaries to mode coupling across abrupt boundaries, such as those

indicated in Fig. 1. We make that comparison because, as discussed in

Sec. 2, mixed-path calculations usually assume abrupt boundaries; and,

notwithstanding the fact that the WKB approximation is invalid for
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abrupt boundaries, the WAVEGUID/WAVEPROP codes omit backward-scattered

modes for computational convenience.

The formulas for the gentle boundary are presented and discussed

in Sec. 3. For an abrupt boundary, where 2 = 0, we have:

Z+ -

1 (33)
n 2ikS+A+ -m + S

n n m=l n m

where the superscripted plus (+) and minus (-) denote, respectively,

parameters in regions I and II. Backward reflections are also omitted

from Eq. (33). This is consistent with WAVEGUID and WAVEPROP.*

We again assume that agI = 1 and only a second-order incident

mode:

I if n = 2,

r = if n'id,2(34)

but here we use a frequency of 45 kHz, in order to give us a better

test of the method. Figure 8 plots, as a function of agII, the lowest

five TM mode amplitudes at the beginning of region II, i.e., where

x = 0+.

The results for the abrupt and gentle cases are about the same if

gIli > 10-3 S/m, again confirming that almost any model will give good

results if the ground conductivity is high enough. However, for

agII < 10-4 S/m, the differences between the two boundary types are

substantial. The first (n = 1) mode is the so-called Brewster mode

which, although strongly excited, is very heavily attenuated over

poorly conducting ground. At great distances beyond the boundary, the

second (and least attenuated) mode is the most important. Figure 8

*In the sum of Eq. (33), Z+ - Z-- , L'Hospital's rule gives, for

the m - n term,

A S
A+ + n

n n
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shows that, for agII < 10-4 S/m, the abrupt and gentle models give

mode-2 amplitudes that disagree by 6 dB. As discussed in Sec. 2, we

believe the gentle boundary to be more realistic than the abrupt.
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SECTION 5

CONCLUSIONS

In this report, we have derived formulas for approximating VLF/LF

waveguide-mode amplitudes beyond a conductivity boundary in terms of

the mode-amplitudes incident on that boundary. Although algebraically

complicated, those formulas are easily programmed and require far less

computer running time than numerical mode-coupling algorithms used in

"exact" computer codes, such as WAVEGUID/WAVEPROP. The formulas have

two desirable features: they are computationally simple and they

depend mainly on the ground conductivity values on either side of a

transition, but only slightly on the conductivity variation within the

transition itself. Data from available maps of worldwide ground

conductivity can therefore be inserted directly into the formulas.

The mode-coupling formulas are subjected to three areas of ap-

proximation, which we believe are valid under most circumstances

encountered in practice. First, and most important, we substitute an

equivalent parallel-plate waveguide for the actual waveguide in the

short spatial interval that contains the transition zone. Second, we

ignore reflections from that zone, which requires that all conduc-

tivity changes within the transition zone be gradual (occurring over

distances at least as long as the reduced wavelength A/2r). Third, we

neglect phase and use only the magnitudes of the modes when performing

mode sums. However, the mode-coupling equations [Eqs. (7-12)] are

derived complete with phase terms that can, at the discretion of the

analyst, be retained.

The latter approximation--neglect of phase--is appropriate for

models of worldwide noise because such models divide the earth into a

large number of sections that behave as equivalent noise transmitters.

Each noise transmitter contains many lightning sources that are uncor-

related and noncoherent. Moreover, noise models involve average

rather than instantaneous values, and such averages smear out the

nulls that occur on signals from coherent transmitters. The main

effect of phase in the mode sum is to create nulls; and accurate
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calculation of field strength in a null requires retention of many

modes. Neglect of phase in the mode sum--but not elsewhere--

eliminates nulls and thus substantially reduces the required number of
modes.

Although derived for inclusion in future computer models of

VLF/LF worldwide atmospheric noise, the mode-coupling formulas can be

used in any application where the number of propagation paths is so

large that the computer running time becomes a problem. However, when

the formulas are used to describe coherent signals rather than noise,

the phase terms must he retained. Moreover, because retention of

phase necessitates inclusion of more higher order modes, and because

the effective height h depends somewhat on mode number n, the mode-

specific hn [Eq. (29)] should be used instead of the average h

[Eq. (30)].
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APPENDIX

DERIVATION OF EQUATIONS

INTRODUCTION.

This appendix derives our method for efficiently calculating the

coupling of modes across a region of changing ground conductivity. We

assume that the earth and ionosphere can be modeled locally as a

parallel-plate waveguide. That assumption leads to equations for the

propagation constant, which can be quickly solved numerically in the

case of the TM modes and analytically in the case of TE modes. In

that way, we avoid the complicated mode-coupling calculations used by

the more precise WAVEPROP program. Here, we restrict our attention to

normal daytime ionospheric conditions, but the method can, in prin-

ciple, be extended to nighttime conditions.

We use a generalized version of the method developed by Wentzel,

Kramers, and Brillouin for quantum mechanical applications--hence the

name WKB method. In essence, they replaced the search for a wave-

equation solution, which is a rapidly varying function, by a search

for a more slowly varying function. Under certain conditions--

typically, when the medium is changing slowly over a wavelength--the

slowly varying function can be assumed to be a constant. That is

known as the WKB approximation--or, stated more precisely--the first-

order WKB approximation. We do not make this assumption, however, but

find a coupled set of exact differential equations for this more

slowly varying function. Thus, our method could be called a general-

ized WKB method. If we account for both mode coupling and backward

mode reflection from the boundary, the equations are far too complex

to be solved quickly. Therefore, we make the WKB-like assumption that

the change in the ground conductivity is slow enough that backward

reflections can be ignored. At the end of this appendix we test that

assumption by making the opposite assumption--that mode coupling can

be ignored--and find that the reflection is very small.

We use Budden's renormalization of the magnetic field (see Budden

[1985]). Thus the field H used in this appendix is, in fact, the
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magnetic field multiplied by the impedance of free space. The wave

impedances are therefore dimensionless and should be multiplied by

377 0 to put them into MKS units. The above also removes the distinc-

tion between the magnetic and electric fields. In this appendix, we

often combine the standard TE (Ey, Hx, Hz) or TM field components (Hy,

Ex, Ez) into a new field called P. That notation allows us to derive

one set of equations that is applicable to both TE and TM modes.

We also assume that the impedance of the earth is independent of

the mode parameter (Cn). As shown later, that approximation is tan-

tamount to assuming qg is independent of Cn. The definition of qg is

q n 2 _ I + C )1/2 (n2 _ 1)1/2 f + Cn (35)g ng n- 2 n 2 _5

The mode dependence is second order in Cn/ng. If we make the restric-

tion that ICnl s 0.5, then the largest error is at very low conduc-

tivity (ag -10-5 S/m), where it is about 2 percent. That approxima-

tion is not critical to the analysis, but allows analytic forms to be

derived for the TE case. Without that approximation, integrals over

height from 0 to o, would have to be changed to integrals from -C to

w, and some other analytic forms will change.

Many quantities used here are functions of distance from the

transmitter (denoted by x), height above the ground (z), and mode

number (n). When it does not cause confusion, we omit the function

parameters or mode number subscript in order to avoid visual com-

plexity.

MODEL.

We treat the earth as a conducting half-space below z = 0, and

the ionosphere as a conducting half-space above z = h. The index of

refraction for the earth and the ionosphere is, respectively,

2 =n =r C (36a)
g we•0
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L2

2~ai
n 12i (36b)

iWE 
0

Here, we assume that ag 2 10-5 S/m, but we make no assumption (momen-

tarily) about ai. We also assume that the conductivity of the earth

is constant for x < 0 and x t 1, but that it changes in the region

0 < x < 2. For our purpose, the conductivity is considered to be

continuous. We assume that the boundary is far enough from the trans-

mitter that the total field is made up of a sum of fields of in-

dividual waveguide modes. For example, the electric field is

Ey = E yn (37)

n

MAXWELL'S EQUATIONS.

By using Budden's renormalization we can show that Maxwell's

equations for the TE case become:

H E_ _ (38)x ik az

aE
Hz aE ' (39)

z ikax'

and

ikn2x Wz Ey + Hz 0 (40)
ikn(x az 2] y ax z

For the TM case, Maxwell's equations become:

ikn 2 E - - H (41)
x 4 z
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ikn 2 E 8 Y (42)
z ax

and

02H OE

-ikH + a 2 + -=E 0 (43)
y ikn 2 az 2  Cx

FIELDS WHEN a g CHANGES.

To illustrate our technique, we use Fy, the y component of the

field, in the region where ground conductivity is not changing, i.e.,

x < O. (Note that Fy = Ey in the TE case and Fy = Hy in the TM.) The

form of Fy is well known; i.e.,

F= fn(Z) (rn eikSx + Rn e i ) (44)

n

Here fn(z) is the height gain function, rn e-ikSx represents the

forward-moving wave, and Rn eikSx represents the backward-moving wave,

i.e., that part of the wave reflected from the boundary. We normalize

the height gain to one on the ground, so that the excitation (rn) and

reflection (Rn) factors represent the forward and backward field on

the ground at x = 0.

In the region where the ground conductivity is changing we need a

form that reduces to Eq. (44). Thus, for x ? 0,

F y= - : fn x) [An(x) + B n(x)] (45)

n=[

Here, An(x) represents the forward-moving wave, Bn(x) represents the

backward-moving wave, and fn(z, x) is the height gain, which is

dependent on x. Here, An and Bn are arbitrary functions of x. We

place restrictions on the height gain term fn, and determine what form

An(x) and Bn(x) must have to satisfy Maxwell's equations.
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The restriction on fn is that locally it must satisfy the wave

equation

[_82 2 2 zlfz
-+ k q (x, z) fn(Z x) = 0 (46)

az 2  n

where q 2 = n 2 (x, z) - I + CG.

We discuss the height-gain term fn in more detail below; there we

show that fn is orthogonal in the sense that

f fn(Z, x) fm(z, x) dz = An(X) 6 nm (47)
0

The boundary conditions satisfied by fn determine the modal equation

that gives the value of Cn. Thus, the information about the ground

conductivity is contained in fn, so we can restrict ourselves to the

region within the waveguide (0 : z • h).

Equations (39) and (42) can be written:

F = (48)
z ik ax 'y

(So Fz = HZ in the TE case and Fz = -E. in the TM case.) The form of

Fz that is consistent with Eq. (45) and that reduces to the correct

form for x : 0 is

CO

F z : fn Sn (An - Bn) (49)

n=l

We combine E.7s. (40) and (43) (in the waveguide) to give:

ik azF2  y ax z
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The functions An(x) and Bn(x) must satisfy Eqs. (48) and (50). To

find out what this requires of An(x) and Bn(x), we use Eqs. (45) and

(49), along with Eq. (46) and the orthogonality of fn to derive the

following after some algebra. (Here, a prime symbol denotes the

differentiation with respect to x.)

A+BI+ ikS ( - Bn) ~-V K (Am + Bm) 0 ,(51)

n n n n n+E mn m
m= 1

S' S
A' - B' + ikS + Bn) + (A-B) K•(A- Bm) n 0
n n ntAnn S ~nn j +E m ~ mj S

m=l
(52)

Here,

Km - r f;(z) fn(z) dz (53)mn An
n f0

Adding Eqs. (51) and (52) yields:

A' + ikS A + fn + [Aml + ]

n ~n n 2S n (n J2n) En M=l

+ B I JI - S]S K mn =0 (54)

Subtracting those equations from each other gives
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St 
C

B' - ikS B - n(- Bn + -
nl n n 2S An n 2 nA

+BOm = 0 (55)

Now we define A and B in terms of a and b, which are functions that

vary more slowly with respect to x, and we let

an (x) -ik f0x S (x') dx'
A= e (56)

n S jn(x)

and

b(X) ik f S (x') dx'
B= -_n e (57)n JS n(x)

Thus Eqs. (54) and (55) become

2S 2ik fO Sn(X) dx'
a' w-b e

n 2- S n
n

Sfin J m -ik .0 [Sm(x')-Sn(x')] dx'+ 2 = '--S_-m a m e

Sn - Sl n m,(S (X

S Sik f0x ' S ) + S ) dx'

+ [ n } bm e 0 [ + ] d K = 0 (58)

45



so -2ik xS(X') dx'i n0
n 2 S nn

+ E S{n Sj am -ik fJ [Sm(X')+Sn(X')] dx'

+ S+ S] b ik s [(x')-S (x')] dx'}K =(9

+7 Jn am be n n I n=0(9

n m,

Equations (56) and (57) would be the WKB approximation if an(x) and

bn(x) were constants. Thus, Eqs. (58) and (59) become the second-

order WKB approximation. Up to this point, we have made no approxi-

mations. On pp. 66-68 we show by direct calculation that the reflec-

tion term is very small. Therefore, we can neglect reflections. We

can now set bm = 0 in Eq. (58).

Removing the nth term from the summation in Eq. (58) yields:

n n Knn j am e Kmn = 0

mrn

(60)

That reduces to a very simple form if we let

- .f K dx'
a n(X) = a n(x) e (61)

Recall that, from Eq. (53),
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K (x ( f' (z) dz . (62)Knn(X n• n

However, from Eq. (47) we see that

A'(x) = 2 f' (z) fn(z) dz (63)

So,

K i=A' ,(64)

Knn 2A• n(4
n

and hence,

J K dx = [n (x)/An(Q)] (65)

Thus Eq. (61) is

nn X) a (x) (66)

So, from Eq. (60) it follows:

'(x) = (x) a W (67)an g nm~x am(

m=l
mpn

where for, m o n,
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IS + S I (0) A(x)
in mi m nJSb. Sn& A0,x Ano

X e f mn K (68)mn

We show below that the function Kmn (when m 0 n) has the form:

K = An iC _ -m (x) , (69)
m n Aik 2 2 -(x

where ý(x) = qg(x) for the TE case, or g(x) = Zg(x) for the TM.

Thus putting Eq. (69) into Eq. (68) we get

-ik 0 (Sm-Sn)dx' A(O)
0i A (0)

(x) = e -- -)'(X)rim( 2 2ik Sn9 m[Sm - Sn) A n(0) -A ()A(x)

(70)

Here, we used

C2 C2 1 C2 1 C 2) S2 s2 S Sl S + S
n m m n - - m n m n

(71)

We can integrate Eq. (67) directly, then:

CO x

a n(X) = an (0) + E gn(x') am(x') dx' (72)
m-1 0

m#n
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We can solve Eq. (72) as we would a perturbation or scattering

series. That is, we can use Eq. (72) to find am(x') and substitute

this into the integral, getting:

an(x) = an(O) + E am(O) gnm(x') dx'
m-1 0

mon

+ E dx' gnm(x') Jgmi(XI") a (x") dx"

m=l 2=1
m'n lom

(73)

We can repeat this process an arbitrary number of times. If we define

gnn(x) - 0, and assume summation over repeated symbols, the notation

is simpler:

a (x) =a(O) + C(1) am(o) + C(2) am(0) + G(3) am(o) + -.- (74)n n n nm nm

where

Ix
G(1)(x) J gnm(x) dx (75)

run 10

xrX'

G (2)(x) dx J jx') (x") dx" (76)
1 0 0o

" 0 dx' gn(x') G(1) (x') (77)
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or, in general:

GM~x W * j dx' g nl(x') *.I dx"''' m XI
k 0 0O

(78)

-~ J dx' gn(X') G- (x') . (79)

For x = 0, and ignoring reflections, we have, from Eq. (44):

Fy= y E 'nfn(Z) (80)

n=1

At x = 0, we have, from Eq. (45):

Fy E fn(Z, 0) A n(O) (81)

n=l

These must be equal. So, since from Eq. (56) and Eq. (61)

A (0) = a (0)/ISn(O) = a (0)/1§n(0), (82)
n n n n n

we see that

n (0) = r S§7 ) (83)
n n n

That is the initial condition on a.
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p

!

Putting this all together gives, for 0 : x : 1,

ox
s /Sn (0) An(x) -ik J0 Sn(x') dx'

Fy(x, Z) E rn[l + n ] S (x) AW f n(x, z) e
n n

n=l (84)

This is Eq. (7) of Sec. 3. In Eq. (84), we define the mode-coupling

factor Qn as:

Qn Q()n , (85)

and

Qn(i) E G(i)nm (x)V S (0) r (i+l)nn (86)

m=ln

mon

Here Q~i) represents the ith order scattering. In the limit, as rn

goes to zero, we have:

r [1 + Q (x)) G(i) (X) m r (87)
n n ru S (0) m (7

m=l i=ln

HEIGHT GAIN AND MODAL EQUATIONS.

TE Case.

In the TE case, we write the height-gain function as en(z).

Recall that it is a solution to Eq. (46). The boundary conditions

require that en and
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n k T e (88)
n -j ikz n

be continuous across the boundaries at z = 0 and z = h. Thus, we can

define an impedance function:

e (z)
Z(z) - n- (89)

•n(

Therefore, the boundary conditions are

1

z(0) = L = z (90)
qg g

and

Z(h) -Z (91)

The solutions of Eq. (46) that satisfy Eq. (90), Eq. (91), and the

radiation condition (i.e., that the field must go to zero at

infinity), and have en(O) = 1 are:

Zi [CZg - 1 -iCkh -iqik(z-h) for z > h (92)

T CZi + e1o h,(2
e _

e cos Ckz + i sin Ckz for 0 < z < h (93)
n C

eiqgkz for z _ 0 (94)

Recall that the solution to Eq. (46) is a superposition of up- and

down-going waves whose amplitudes are constants to be determined by

the boundary conditions. Thus, in the three regions there are six
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constants. Two of them are determined by the radiation condition and

one by the normalization condition. In reality, the boundary condi-

tions at z = 0 and z = h determine four more constants, but there are

only three to be determined. That fact places a restriction on the

value of C, which is expressed by the modal equation:

CZ 9+ I CZ I -2iCkh (95)

GZ -1 CZi + I

Note that we can write Eq. (95) as .

iC Z + Zg) cos Ckh I( + C2ZiZg) sin Ckh (96)

)

The last form is particularly easy to solve numerically. When ag is

very large, Zg is very small, so:

iCZ. cos Ckh = sin Ckh (97)

(0) n/hwhetofrtodr•
To zeroth order in Zi, n/kh, while to first order

n n 1 - iZt/kh (98)

We solve Eq. (96) numerically using the Newton-Raphson method starting

with C - c-l).

TM Case.
I.

In this case, the height-gain function is written as hn(z) and

the boundary conditions require that hn and

V

S-h 1 a (99)
532 z n
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be continuous across the boundaries. Thus,

•'(z)

Zn(Z) ( (100)

must also be continuous. The boundary conditions are then:

Z(0) = - - (101)
2 g

n

and

Z(h) qi z (102)
n i

This gives: -

c-z -iq k(z-h)

C+ e eiCkh e i for z > h (103)

z
h (z, x) = cos Ckz + i f sin Ckz for 0 < z < h, (104)
n C

iq kz_

e k for z < 0 (105)

and the modal equation

C + Z C -Zi 2~h.i
--e -21Ckh (106)

C g i

Equation (106) may also be written:
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2i
iC(Zi + ZgJ cos Ckh l (C + ZjZgJ sin kbg (107)

The zeroth order solution for small Z is then

n(O n - (108)

and the first order is

n n i+ i(109)

ORTHOGONALITY OF MODES.

To prove the orthogonality of fn(z, x) we note that, since fn is

a solution of Eq. (46), we can write:

f a f f - f2 -f f f = 0 (110)
m az2 n n az2 m n m.n

If n P, m, then

f f dx f f -f af dz

iO k 2 C2 _ 2 1 J Ltm Bz n - n T J
I. L "'2(13.1)

The radiation condition ensures that f,1 -> 0 as z -> c. The fact that

fm and 8 fn/aZ are continuous across the boundary at z = h means that

there is no contribution to the integral at z = h. If the lower limit

of the integral goes to -co, then clearly, Eq. (111) would reduce to

zero. However, using the current limits, since fn(O) = 1, Eq. (111)
reduces to:
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f zf()dz a 2 [ f ((0) f ](0)(112)
n in ~~(2 2 c2]1a n a

11 In)

However, from Eq. (93), we see that in the TE case:

f (0) = ikq , (113)
8z m g

and, from Eq. (104), in the TM case:

f--• (0) = ikZ (114)

Since we assume both are independent of the mode, this gives us or-

thogonality.

FUNCTIONS An(X) AND Knl(x).

We calculate An(x) directly from Eq, (47) and from the functional

forms of fn(z, x). In the TE case, we use Eqs. (92) and (93). So

after some manipulation and using Eq. (95), the modal equation, we

get:

A [1 ikh + Z i(115)

An(X) =T I 02 1 k i
SL j j iJ

In the TM case, using Eqs. (103), (104), and (106) we get:

I _[ Z 2
An(X) + ikh + G2 - 2 2Z

(116)

To compute Krm(x) for n s m, we start from Eq. (46) and take the

derivative with respect to x. The result is:

56



DfltJVUW M¶.WVW~L~fl~MP .uf----------------- ------. --

a fý +2k2q + kqn2  0 . (117)

az2 fn+ n

Multiplying Eq. (46) for mode m by f,', and subtracting Eq. (117) multi-

plied by fm yields:

82 2 2( ?
2 2 1

f -- f' - - f + 2k qnq f f + k - f'f 0 n (118)
n Iz2 n n n2 in m

Assuming n 0 m:

f'f f dz ~ j j Jdz (f~~~ ~f
m k2 (CIA- Gil) 0 n0

(119)

which gives (after due attention to the boundary conditions):

Kr A _L, -.2 f' , S IT (120)

If we write

f (z, x) = cos Gkz ;sin kz (121)
SC nC(2

then Eq. (120) becomes

K + 1 1 a ý(X) (122)
Am ik - C 2

where ý'(x) = qg in the TE case and ý(x) = Z in the TM. *•4.

57

L a ý k riý PA , ýP._ k P " m k¶ F- T, ý?_W kk T%.k F-A, NA{X ?-k 'J A PIA P



MODE COUPLING AT SHARP BOUNDARY.

Using an adaptation of the method of Pappert and Shockey [1972],

we can compare our method with the results from methods using a sharp ,

boundary.

First we write Fyn and Fzn as the y and z components of the field

of the nth mode. In the TE case, we take F. = HZ and in the TM case,

Fz = -Ez. If we write:

L 2 (123) S

k aa

01'

and

Ftj
yn)

Un= (124)
Lzn] %•

then Maxwell's equations can be written:

LU = U& ([25)n ik ax n.

If n2 is not a function of x, then x appears only in an exponential

teim, as for example;
S

-ikS x SI

uyn n fn (z) e (126)

So Eq. (125) becomes: r

Lu SoS u (127)

Now we defitne to be eiaenvL.•ters of n L, the transpose of and we
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ý1'

introduce the following bracket notation, for arbitrary vector func-

tions r(z) and S(z)

<r, s> 0 r(z) S(z) dz (128)

Now it is clear that

KV , Lu > =< v u > (129)m n m 'n

If we let the eigenvalue of •m be tm so mH
it I/ : vm v (130)

then Eq. (129) becomes:

n<v 1 'An > Vi i' U (131)n n n m'I 11 

,• .

Finally we see: A
S = J and <V u > L 0 i in . (132)

n n m n 
,,

It is clear that p

VzT 

'"-N

= (133)
m Fym)
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Fr, mF1 I dz = IfP +
- -zyndyn<v II'un > F zm •m Fn dz F=y F zn+ F zF i dz.

0 %zn 0

(134)

Therefore, since Fzm = Sn~yn [Eq. (127)],

<Vm' Un> = Sn + SAn) FymFyn dz (135)

0

-2 S.m 6mn (136)

For the case of waves on both sides of the boundary, let un- represent

the wave before the boundary and l+n represent the wave after it. Now

the boundary condition (that Fy and Fz be continuous) is expressed as

Z = ii u n (137)

n=l n=1

If we multiply by ,+ and integrate from 0 to c, we find that:

CO CO

<V, un> = <v, U > (138)
ts n M n

n=l n=l

From Eq. (134) it is clear that:

% <Urn > ! nJ ym yn dz (139)

" + SJ [Yln (140)
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Using Eq. (136), th. result is:

2S~ A + (14].)

in1 m Z (+SII in
n=l

Now, using Eq. (126) we get:

-+ I +2 + + -2ikSXn

A = f r4j f (z)f (z) e dz (142)

(f2 -2ikSx+
= e A A (143)

where A+ was previously defined [see Eq. (47)]. Now we write:

X I G + r- t+(Z)fn(Z) e dz (144)

r+ T- X e (145)m n mn

and it follows that:

f-4
+- _ - ik IS+-S x

+ 2A*n + . (146) 3
m rn '3

Cons ide r:

Sf J t
4 f- dz (147)

l =m n 6
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From Eq. (46) we now have:

f+ - f 2 a f+ I [C - ( sC 1 +f - (148)

in z-2 n n az2 m nJ MJ m n

However, we have solved equations in this form before, so it follows:

f- -d (149)

JO m n iic[(c]2-) - (Cj20V

Thus the connecting forrula across a sharp boundary at x is:

= e ik in)
rI + sj ekkSJ . (150)m 21k Sn A+m A +S n

RESULTS FOR TE.

Results for the TM case are presented in Sec. 4, in this subsec-

tion, we discuss some results for the TE case. In the TE case, we are

allowed to make some approximations that give us analytic solutions

for some important quantities. Unfortunately, we cannot find such

solutions in the TM case and so must proceed numerically, First, we

consider the derivative of Zi and 0 with respect to x, recalling that

2 2 2qi n ni 4- C 1 1

It follows that

qiqi = CC' (152)

Thus,

.N
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S= 1l , 3 o 13

Z - qi -Z C c (153)
qi

To find C', we take the derivative of the modal equation [Eq. (95)]

and find that

CC,{[ikh + Z]l - - =Z/
2  (154)

Comparing this to Eq. (115) shows: I

C' Z' (155)
21k A CZ2  g

n g

In Eq. (154), the (qg/C) 2 dominates, and since WZil << IkhI, then

- - C' ikh = Z' (156)
C g

We integrate this directly to get

i

C(x) = C g e (157)

Equation (157) has been compared to the numerical solution of the

modal equation [Eq. (95)' at 5, 25, and 50 kHz, and is valid to less b

than 0.1 percent over a range in ag from 4 S/m down to 10-5 S/m.

We can use the above to study the coupling of TE modes. From

Eq. (60) it is clear than Kmn/Knn (where m # n) is the relative amount:

of mode in coupled into mode n by the conductivity change from x to

A + dx. In this section we show that this is always very small, and

hence, that TE mode coupling is very small, as expected. I
If we use the same reasoning as above, Eq. (115) can be ap--

proximated as i

63
IW



h 2
A -h =1(158)

n G

then Eq. (122) becomes, for the TE case (recall m , n)

K ICmzg 2  (159)
nm 1h(m g] (2 - 2) qýgKnm~ n -•q

The diagonal term is

1

K =--- A' (160)
rin 2A n

n

So we have

nn [ ,n(161)

Thus, using Eq. (156) we get

K [I I+ i -q . (162)Knn qg qg

This approximation appears to be very accurate (greater than three

decimal places at 2•V KRz), when compared to the complete equation.

Dividing Eq. (159) by Eq. (162) yields:

K C2

Knm 21 111I<< (163)
Knn kOh Zg 2 2

m 11
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Thus, the off-diagonal terms are very small and we do not expect a

large amount of mode coupling for the TE modes. In fact, using

Eq. (1.57) it is fairly easy to show that Eq. (70) reduces to

2 q

g9(X) = - I _ (164)nn2 2 2"

ikh m - n S m(0) S n(0) q _

Therefore,

2 r -

G 2 n 2 ( Z0 - Z (0)] , (165)
nm ikh m - n Js m(0) S n Z(0) gJ

and

z 2 (x) - Z2 (0) (166G (2) r2• (166)
nm (kh)2

Using Eq. (86), we find that 1 4 Qn(x) i. The total field, then, is

S (U) A(O - fk S ýX') dx'

Z C.E (Z, XA ) e (Z0 C x) e

(x) CA0 x 18y n
nV n V n T g-

(167)

We know, however, that

/An(O).~~r' q 
, (,() 18

SA n(x.) Cn (0) q 9(x) '(6)••

and

65



q (.ý)
e (z, P) g- --- sin Ckh (169)n Cn(2)

n

so it follows that

T An(0) q (0) Cn(,P) q2

n (-0 z -L-- nn() ; sin Ckh (170)
A riez C (0) q (.R) C (e

en(Z, 0)

We see, therefore, that the field has not changed significantly across

the boundary.

REFLECTIONS.

In this subsection, we consider the reflection term bn in

Eq. (58) and (59). We do this by defining a reflection coefficient R

such that

- K dx'
b R 0 ne (171)n nn

With this definition, Eqs. (58) and (59) can be combined into

S' 2ik jx S dx' -21k f' S dx'
R' - R e -e 0

.)S

nInn

-= n m Rm) gnm + (i RR) n 0

(172)

whe re
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= Sn m g 13
nm S + S grm (173)

n m

The terms in the summation account for mode coupling and are clearly

second order. We have shown that, at least for TE, they can be

ignored. Thus, if we ignore mode coupling, we get:

2 -21k fx'S dx"

R(x) = J -• e dx' (174)

x

[This form gives R(2) = 0, as required, since there can be no

reflected wave past x = X.] To determine the magnitude of R, notice

that the exponential term in Eq. (174) is less than one due to the

imaginary part of S (the attenuation). Since we do not expect the

attenuation to significantly affect the wave in the short distance of

the boundary, we write:

R(x) TJ - dx' (175)

which we solve directly as:

R(x) :S An [S(2)/S(x)] (176)

The maximum reflections occur at x = 0, so,

R(x) s R(O) •5 An [S(2)/S(O)] (177)

Using the approximation for the TE rrode--Lq. (157)--we can show (after
some manipulation), that if the change it) . across the boundary is

AZg, then
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R AZ- g (178)

Thus, the condition for negation of raflection is:

~I AZgJ I C 'C 1 << (179)

That condition is met in the TE case by all reasonable boundaries.

For the TM case, we can calculate the first-order term directly.

The reflection term IRI is the largest for the Brewster's mode where

C : Zg. For a frequency of 30 kHz, IRI 0.02 and changes little over

the VLF range.

68

Fj



DISTRIBUTION LIST

DEPARTMENT OF DEFENSE KAMAN TEMPO
ATTN: B GAMBII.L

DEFENSE COMMUNICATIONS AGENCY ATTN: DASIAC
ATTN. PCROWLEY ATTN: R RUTHERFORD

3 CYS ATTN: A BLANKFIELD
LOCKHEED MISSILES & SPACE CO. INC

DEFENSE INTELLIGENCE AGENCY ATTN: J HENLEY
2 CYS ATTN: RTS-26

MISSION RESEARCH CORP
DEFENSE NUCLEAR AGENCY ATTN: TECH LIBRARY

3CYS ATTN: RAAE
4 CYS ATTN; TITL PACIFIC-SIERRA RESEARCH CORP

2 CYS ATTN: C WARBER
DEFENSE NUCLEAR AGENCY 2 CYS ATTN: E FIELD JR

ATN: TDNM-CF
ATTN- TDTT W SUMMA R & D ASSOCIATES

ATTN: C GREIFINGER
DEFENSE TECHNICAL INFORMATION CENTER ATTN: M GROVER
12 CYS ATTN: DD

RAND CORP
DEPARTMENT OF THE NAVY ATTN: C CRAIN

NAVAL OCEAN SYSTEMS CENTER TELECOMMUNICATION SCIENCE ASSOCIATES
ATTN: CODE 544 ATTN: R BUCKNER

NAVAL RESEARCH LABORATORY
ATTN: CODE 4183 F KELLY

NAVAL UNDERWATER SYSTEMS CENTER
ATTN: CODE 3411 J KATAN

DEPARTMENT OF THE AIR FORCE

AIR FORCE ELECTRONIC WARFARE CENTER
ATTN: LT M MCNEELY

AIR FORCE GEOPHYSICS LABORATORY
ATTN: LID/J RAMUSSEN

AIR FORCE WEAPONS LABORATORY
ATTN: NTAAB
ATTN: SUL

AIR UNIVERSITY LIBRARY
ATTN: AUL-LSE

ROME AIR DEVELOPMENT CENTER, AFSC
ATTI I: j TURTLE

STRATEGIC AIR COMMAND
2 CYS ATTN: XRFC

DEPARTMENT OF ENERGY

SANDIA NATIONAL LABORATORIES
ATIN: TECH LIB

DEPARTMENT OF DEFENSE CONTRACTORS

JOHNS HOPKINS UNIVERSITY
ATTN: J D PHILLIPS

ATTN: RLUNNEN
KAMAN SCIENCES CORPORATION

ATTN: DASIAC

Dist-I


